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Steady flow past an oblate spheroid at small Reynolds numbers
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Abstract. The problem of uniform steady viscous flow over an oblate spheroid is solved in the low-Reynolds-
number range Q < Re < 1.0. The full Navier-Stokes equations are written in the stream function-vorticity form

and solved numerically by means of the series-truncation method. Spheroids having axis ratio ranging4gom 0

to 0-905 are considered. The obtained drag coefficients are compared with previous analytical formulae which
were based on the solution of the linearized Stokes equations. As expected, the deviation between the present
results and the analytical formulae is small for low-Re flows, however, it increases with the increase of Re. The
present results provide a measure for establishing the range of validity of the analytical solutions.

Key words: uniform steady flow, Legendre functions, oblate spheroids, series-truncation method.
1. Introduction

A considerable amount of research has been published on axisymmetric flows past spheres.
In many situations, however, the shape of the particles contained in an infinite fluid is not per-
fectly spherical. Aerosols, for example, are oblate spheroidal in shape. According to Lawrence
and Weinbaum [1], a new behavior of the drag was discovered. While investigating the oscil-
latory motion over oblate spheroids, they found that the force was not a simple quadratic
function in half-integer powers of the frequency as in the classical solution of Stokes for
a sphere, and the force for an arbitrary velocity contained a new memory integral whose
kernel differed from the classical behavior derived by Basset for a sphere. Payne and Pell [2]
neglected the inertia terms and obtained formulae for the drag on bodies of various shapes
including oblate spheroids. Breach [3] modified these formulae by using the two classical
methods, those of Stokes and Oseen, for finding approximations to viscous streaming at low
Reynolds numbers. The drag formulae by Payne and Pell [2] and Breach [3] are only valid for
small Reynolds numbers.

In this study, a series-truncation method, where the stream function and the vorticity are
expanded in terms of Legendre polynomials, is used to solve the problem of uniform steady
flow over oblate spheroids for Reynolds numker. The results obtained from solving the
full Navier-Stokes equations are used to check the range of validity of the available analytical
solutions which are based on the solution of Stokes equations (nonlinear terms are neglected).

2. Formulation of the problem

Consider the problem of uniform steady incompressible axisymmetric flow over an oblate
spheroid with major and minor axes of 2a and 2b as shown in Figure 1. To suit the geometry of
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Figure 1. The Coordinate system.

the problem, we transform the Navier-Stokes equations into the oblate-spheroidal coordinates
system(&, n, ¢) using the relations

x = ¢’/ cosht sinn cosg,
y = ¢’ coshé sing sing, Q)
z = (¢’ sinhé& cosy,

wherec’ is the focal distance. These equations, upon introduction of the stream fugiGtion
and vorticity ¢, take the following dimensionless form
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The stream function is related to the dimensionless velocity compoteatsy,) by

%—w = \/sintP & + cod n coshé sinnw, % = —/sintP & + co n coshe sinnw,, (4)

n

and the vorticity is defined in the usual way as the curl of the velocity vector.

In the above equations, the dimensionless variables are related to the dimensional ones
by: v = v/'/U,c? ¢ = ('cJU), w = (w'/U,), with U, being the free-stream velocity
and primes denote dimensional quantities. The Reynolds number Re is definedas Re
(pU,(2¢") /), wherep is the fluid density, ang is the coefficient of viscosity.

The boundary conditions to be satisfied are the no-slip and impermeability conditions
on the surface of the spheroid and the free-stream conditions away from it. These can be
expressed as

GV LV

l//ZB_n_E:O até =&, (5)
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%a%sinhzsinzn and Z—weécosﬁé‘sinZn as & — oo. (6)
n

The parametef, defines the surface of the spheroid and is related to the axis(tgtio by:
£, = tanti}(b/a). A perfect sphere would be representedshy> oo whereas a flat circular
disk would be represented lgy = 0. The conditions in Equation (6) lead to,

Y — Zcosif&sifny asé — oc. (7)

The flow away from the oblate spheroid is irrotational leading to,

{—->0 asé& — oo (8)

3. The method of solution

Consider the following expansions fgrand¢

o0 1
v=Y 5 [ Bod ©)
n=1 4
£=Y &Py, (10)
n=1

whereP,(y) and P1(y) are, respectively, the Legendre and first associated Legendre polyno-
mials of ordem with argumenty = cosy. These functions form a complete orthogonal set in
the rangey = —1to y = 1, Alassar and Badr [4] and Dennis and Walker [5].

Substituting from Equations (9) and (10) in Equations (2) and (3) and multiplying by
Pl(y) and then integrating over from —1 to 1, we obtain the following expressions by
using the orthogonality properties of the Legendre functions,

i@ — tanhg ZJ;” —n(n+1f, = coshen(n+1) [Si”hzf + (;i;fgnlss)} &
+coshg n(n(z—nlz(z)(—zs)in; Y e (11)
22;2” + tanhfg(jj% + [coslr%s —n(n + 1)] g = R;Sm (12)

where,

[o. SN0 o}

1 (S ) de. ) df'l
Sn = coshe {ZZ%ﬁ (dig] —ta”h58j> + ZZ&;&E} , (13)
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with the understanding that ; = go = 0 and the coefficients appearing in the series in
Equation (13) are defined as:

n JG+L [ n i n i j
@ =—@nt+l) n(n—i—l)(—l 0 1)(0 0 o)’ (14)
JjG2=DG+2 (n i noij
"= 2n+1 , 15
hij=( +)\/n(n+l)i(i+1) 1 -1 2)J\o 0 o0 (15)
where(lj}1 nffz nffs) are the 37 symbols, which are defined in the Appendix.

The governing equations are now written in the form of a set of ordinary differential equa-
tions with the dependent variables being the coefficiéritsg,) of the series. The resulting
Equations (11) and (12) represent two sets of ordinary differential equations, with every set
containing an infinite number of equations, as compared to the original two partial differential
eqguations. However, we will solve only few of these equations and yet obtain a highly accurate
solution. The boundary conditions associated with these equations are

_dfa
fn(‘i:o) — E(So) — O, (16)
F2(&) — cosR £8,1, d{;’f) L SinhZ6,.  g.(5) >0 asé — oo, (17)

wheres,; is the Kronecker delta.

4. The numerical algorithm

The solutions of the functiong and¢ are obtained by solution of the Equations (11) and
(12) for the functionsf, and g, and then substitution of the results in the series (9) and
(10). Equations (11) and (12) are first truncated afte= N for some N which is to be
determined experimentally in order to achieve a highly accurate solution. In doing so, the
truncation automatically assigns zero values for all the functions with subscripts greater than
N. These functions with subscripts greater thamppear on the right hand side of Equation
(11) when solving for thef,, functions with subscripts = N — 1 and N. As a starting point,

all functions are assigned zero values. Equations (11) and (12) are then solved iteratively. The
numerical algorithm is as follows

1. Denoting the right-hand side of Equation (11)4¢£), it can be rewritten as®df, /d&? —
tanhé(df,/d¢) — n(n + 1) f, = r,(&). For each mode, central differences are used to
approximate the space derivatives and the resulting tridiagonal system of equations are
then solved for the functio,. All the functions f,, are obtained sequentially from= 1
to N.

2. Similarly, Equations (12) are then solved for the functighsequentially from: = 1 to
N. Itis important to observe that there are no boundary conditions for the fungtjats
the surface of the spheroid. These values which are required to complete the integration
of Equations (12) are set to zero for the first iteration and then updated in subsequent
iterations as described in the next step.
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3. We obtain the boundary values of the functigngrom Equations (11) by approximating
the space derivative’d, /d&? by central differences. The following formula is obtained

2n°+2n—3
(2n—1(2n +3)

coshé,n(n + 1) [sinh2 £, + } gn(&,)

nn+1(n+2)(n+23)

+ coshg, 21 131+ 5 8n+2(&0)

nin—1(n—-2)(n+1) 2fn(& + h)
+ coshg, D3 2=

whereh = A&. This approximation was successfully used for the elliptic cylinder case by
Patel [6] and for the sphere case by Drummond and Lyman [7]. This formula is solved for
the functionsg, on the surface of the spheroide g, (&,)) sequentially fromn = 1to N.
It is important to understand that at any given instant we use the most recently available
information on the functiong, and f,. For example, the values of the functiofis »(j
represents any mode from 1 ) in the last formula which we need when solving for
g;(&,), are taken from previous iterations, while those for the functipry are already
updated because they are solved for priog tevithin the same iteration.

4. It was found that a relaxation factor was necessary to determine the fungfiofie
refers to the iteration number) according to

grE) = kg™ &) + (L —K)g" 1 (E), (18)

whereg”~1(&) are the solutions obtained from the previous iteration, ard< 1.
5. Repeat all steps until convergence is reached. The condition set for convergence is
lgn(€) — gn ()| < 107

The number of points used in thledirection is 201 with a space step ofo@5. This
sets the outer boundary at a physical distance that ensures that the conditions at infinity are
appropriately incorporated in the numerical solution. We examined the effect of the step size
on the flow field near the spheroid by comparing the results when using different values. No
significant changes in the values of the drag or the surface vorticity were detected by reducing
the step size further than the given value. As there is no intrinsic way to determine it, the total
number of terms taken in the series was found by numerical experiments. The total number of
terms depends on Reynolds number gnd-or higher Reynolds numbers and lovggrmore
terms are needed. One way to check the sufficiency of the number of terms taken in the series
is to observe the difference in the values of the drag. Figure 2 shows the surface vorticity for
the case Re= 0-1 and¢, = 0-25 at different values oN. In this case, the drag values for
the casedV = 6, 8, 10,12, and 16 are respectively,18565,5.15525,5.15775,5-15845, and
5-15875 which differ at the maximum by3%. The parameter, which is used in the aver-
aging process of the vorticity calculations, was determined through numerical experiments.
The parameter is higher for higher Reynolds numbers and is not sensitive to the patgmeter
The number of iterations required for convergence at a tolerance ¢t fahges betwee 2,000
and 10,000. The higher number of iterations corresponds to the smaller axis ratio. The CPU
times depend on the number of terms taken in the series which, in turn, depends on Reynolds
number and the axis ratio. Typically 2 to 5 hours were needed for convergence on a 486-PC
with a 100-MHz processor.
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Figure 2.Surface vorticity distribution for the case  Figure 3. Surface pressure distribution for the

Re=0-1, &, = 0-25 at differentV values. case¢, = 1.0, at different Reynolds numbers
(Curves from top to bottom are respectively Re
0-1,0-2,0-3,04,0-5,06,07,0-8,0:9, 1.0).

5. Results and discussion

In a typical problem of this nature, the quantities sought are the drag, surface vorticity, surface
pressure distribution, and the streamline and vorticity patterns. In what follows, we present
these for Reynolds numbers ofl00.5, and 10 at values o, of 0-25,0.5,0-75, 1.0, 1.25,
and 15.

The drag exerted by the fluid on the spheroid, denoted liyrelated to the dimensionless
coefficientCp by,

D /
Cp=—— (19)
AnU,

whereA(= m¢? coslt ) is the spheroid projected area. The drag coefficient is composed of
two parts, one due to friction and the other due to pressure. We may then write,

Cp =Cpr+Cpp. (20)

By integrating these forces over the surface of the spheroid, we get

Cor = —2tante, / £(E,. ) SiN? n din, (21)

nU,

Cpp =—

/0 P’ (&, m) sin 2nd, (22)

wherep’ is the dimensional pressure. By applying Navier-Stokes equations on the surface of
the spheroid, one can show that

ap ac
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wherep = p'c’/uU,. Using Equation (23) together with Equation (10), the drag components
can be expressed as

gl(sov t)a (24)

4 0
CDP = _:__3 [tanhsogl(so, t) + %(Eo, t):| . (25)
3
As indicated by Equations (24) and (25), the drag depends on the first mode of the series in
Equation (10) which, in turn, depends on the other modes. The drag formula given by Payne
and Pell [2] takes the form

2B
Cpl= ————, 26
Pt 3coskhg, (26)
and that modified by Breach [3] is
2B BRe B?Ré
= 14+ — log(Re/2 R€ 27
Cp2 300er0[ +=28 T Taz0 0g(Re/2) + O( )], (27)
where B = 12 (28)

coshg, [sinhg, + (1 — sintf &,)cot-1(sinhé,)]

The dimensionless pressure distribution around the oblate spheroid can be obtained by integ-
rating Equation (23) which results in

. T(9¢
P =Py~ Pr = / <E + tanh$§> dﬁ, (29)
T E=§g
and by using Equation (10), one can prove that
N dg
p*(n’ t) = Z[Pn(cosn) - (_l)n] |: 8; (Soa t) + tanhSOgiz(Eo, t):| . (30)

n=1

Figure 3 shows the surface pressure distributions for the §ase 1.0 when Re=
01,0-2,0-3,0-4,05,0-6,0-7,0-8,0-9, and 10. As Re increases, the difference in the pres-
sure between the front and the rear stagnation points increases. Figure 4 shows the variation
of the corresponding surface vorticity. The drag coefficients for the range of parameters con-
sidered in this study along with those from Equations (26) and (27) are listed in Table 1. As
Re increases, the computed drag coefficients increase withthgtland Cp, underestimat-
ing the drag valuesCp, which modifies the Stokes drag presentedhy is closer to the
present numerical solution. It is useful to investigate the quantitigs— Cp1)/(Cp)*100
and(Cp — Cp)/(Cp)*100 which measure the relative deviation of the drag formulae given
by Payne and Pell [2], and Breach [3] from the present study. At low Re, there is a good
agreement betweefip,, Cpo, andCp. As Re increases, the values depart from each other
with Cp, being closer taCp. If an error of 5% can be accepted, a range of validity@en,
andCp, can be stated. The formula fatp, is valid for Re < 0-3 while that ofCp, is valid
for higher Reynolds numbers provided that a proper restrictiof, imimposed.
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Table 1. Comparison of”p with Equations (26) and (27).

Re & Cpr  Cpp  Cp Cp1 Cpa CoCm*100 Lo Lre*100
Equation (26) Equation (27)
01 025 15054 36534 51588 5042 5117 226 081
01 050 22068 26866 48934 4783 4857 2.26 074
01 075 23853 20286 44139 4307 4376 2.42 0-86
01 100 22553 15551 38104 3706 3767 2.74 1.14
01 125 19804 12033 31837 3082 3133 319 1.59
01 150 16652 09369 26021 2503 2545 3.81 2.19
05 025 15770 38295 54065 5042 5378 6.74 053
05 050 23275 28363 51638 4783 5111 7.37 1.02
05 075 25390 21623 47013 4307 4610 839 1.94
05 100 24283 16778 41061 3706 3972 9.74 3.27
05 125 21618 13175 34793 3082 3306 1142 4.98
05 150 18470 10440 28910 2503 2686 1342 7.09
1.0 025 16605 40390 56995 5042 5714 1154 —025
1.0 050 24625 30075 54700 4783 5439 1256 057
1.0 075 27045 23110 50155 4307 4913 1413 2.04
1.0 100 26125 18140 44265 3706 4238 1628 4.26
1.0 125 23530 14440 37970 3082 3530 1883 7.03
10 150 20385 11635 32020 2503 2869 2183 1040
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Figure 4. Surface vorticity distribution for the Figure 5.Surface pressure distribution for the case
caseé, = 1.0, at different Reynolds numbers  Re= 1.0 at differentt, values.

(Curves from top to bottom are, respectively, Re

0-1,0-2,0-3,04,05,0.6,0.7,0-8,0.9, 1.0).

The effect oft, on the pressure distribution and the surface vorticity can be seen in Figures
5and 6. The Figures which show the results aeER&0 whenéy = 0-25,0 -5, 0-75,1.0, 1.25,
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and 15 indicate that wheg, decreases, the surface vorticity increases and a positive pressure
gradient may be expecteé, = 0 corresponds to the circular disk case at which a singular
behavior of the pressure gradient is expected. Figure 7 shows the surface pressure distributions
for the case of, = 0-25. The corresponding analytical surface pressure distribution by Payne
and Pell [2] is also plotted on the same figure. An excellent agreement between the present
study and that of Payne and Pell can be observed at B4..

0.0 2

2.0 —

*
0.5 p

&, =025

4 —| N Payne & Pell
[ Present (Re = 0.5)
- Present (Re = 0.1)

T
0 30 60 0 120 150 180 0 30 60 90 120 150 180

6.0 T T T

Figure 6.Surface vorticity distribution for the case  Figure 7.Surface pressure distribution for the case
Re= 1.0, at different, values. of &, = 0-25, and comparisons with the analytical
solution by Payne and Pell.

Figure 8 shows the streamline and vorticity patterns for the cases && and 10 when
&, = 0-25 and 075. As expected, no separation occurs at these low Re values. The symmetry
of the equi-vorticity lines at Re= 1.0 is slightly distorted at Re- 1.0.

6. Conclusions

The series-truncation method by which the steam function and vorticity are expanded in terms
of Legendre functions has been used to investigate the flow past oblate spheroids at low
Reynolds numbers. The governing partial differential equations were transformed into two
sets of ordinary differential equations in the radial direction. A second-order accurate finite-
difference scheme was then used to solve these equations. The numerically computed drag
showed an excellent agreement with the analytical drag formulae given by Payne and Pell
[2] and Breach [3] at low Reynolds numbers. As Reynolds number increases, the calculated
solution departed from these analytical solutions. An estimate of the range of validity of the
analytical solutions has been made.
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Figure 8. Streamline (right) and vorticity (left) for the cases (a) ReD-1, £, = 0-25, (b) Re= 1.0, &, = 0-25,
(c) Re=0-1, &, = 075, (d) Re= 1.0, £, = 0-75.

7. Appendix

myp mp m3
adding angular momenta. They represent the probability amplitude that three angular mo-
menta i, j», and jz with projectionsm, m,, andms are coupled to yield zero angular mo-
mentum. They are related to the famous Clebsch-Gordan coeffidi€ntsThese symbols,

The 3+ symbols( a2 f?’) are transformation coefficients that appear in the problem of
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however, possess simpler symmetry properties. The relation betwgesyi®bols and the
Clebsch-Gordan coefficients is given by

jl j2 j3 — (_1)j3+m3+2j1 1 C'I-'3m3 ' )
my mp ms3 23+ 1 Ji—myja—mz

Many representations of the 3symbols are available. They may be represented by the square
3 x 3 array of the Regg®&-symbol, by algebraic sums, or in terms of the generalized hyper-
geometric function of unit argume@F,). The following formula should give a flavor of the
many representations available

Al(abc)
(a+b—-0)(-b+c+a)(—a+c—p)!

cy _
Caabﬁ - 8%05"‘/3

X[m+aﬂ@—ﬁﬂ@+yﬂw—yﬂQa+Dq”2
(a—a)l(b+ B)!
|

(a+b—c)la—b+c)(—a+b+c)Y?
(@a+b+c+1)

—a—b+c,—a+o,—-b—-p
x3F>
—a+c—B+1L,-b+c+a+1

where

A(abc) = |:

For detailed discussion, representations, properties, and tabulated values, the reader is referred
to Varshalovichet al. [8, pp. 235-411].
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