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Steady flow past an oblate spheroid at small Reynolds numbers
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Abstract. The problem of uniform steady viscous flow over an oblate spheroid is solved in the low-Reynolds-
number range 0·16 Re6 1·0. The full Navier-Stokes equations are written in the stream function-vorticity form
and solved numerically by means of the series-truncation method. Spheroids having axis ratio ranging from 0·245
to 0·905 are considered. The obtained drag coefficients are compared with previous analytical formulae which
were based on the solution of the linearized Stokes equations. As expected, the deviation between the present
results and the analytical formulae is small for low-Re flows, however, it increases with the increase of Re. The
present results provide a measure for establishing the range of validity of the analytical solutions.
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1. Introduction

A considerable amount of research has been published on axisymmetric flows past spheres.
In many situations, however, the shape of the particles contained in an infinite fluid is not per-
fectly spherical. Aerosols, for example, are oblate spheroidal in shape. According to Lawrence
and Weinbaum [1], a new behavior of the drag was discovered. While investigating the oscil-
latory motion over oblate spheroids, they found that the force was not a simple quadratic
function in half-integer powers of the frequency as in the classical solution of Stokes for
a sphere, and the force for an arbitrary velocity contained a new memory integral whose
kernel differed from the classical behavior derived by Basset for a sphere. Payne and Pell [2]
neglected the inertia terms and obtained formulae for the drag on bodies of various shapes
including oblate spheroids. Breach [3] modified these formulae by using the two classical
methods, those of Stokes and Oseen, for finding approximations to viscous streaming at low
Reynolds numbers. The drag formulae by Payne and Pell [2] and Breach [3] are only valid for
small Reynolds numbers.

In this study, a series-truncation method, where the stream function and the vorticity are
expanded in terms of Legendre polynomials, is used to solve the problem of uniform steady
flow over oblate spheroids for Reynolds number6 1. The results obtained from solving the
full Navier-Stokes equations are used to check the range of validity of the available analytical
solutions which are based on the solution of Stokes equations (nonlinear terms are neglected).

2. Formulation of the problem

Consider the problem of uniform steady incompressible axisymmetric flow over an oblate
spheroid with major and minor axes of 2a and 2b as shown in Figure 1. To suit the geometry of
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Figure 1. The Coordinate system.

the problem, we transform the Navier-Stokes equations into the oblate-spheroidal coordinates
system(ξ, η, ϕ) using the relations

x = c′ coshξ sinη cosϕ,

y = c′ coshξ sinη sinϕ,

z = c′ sinhξ cosη,

(1)

wherec′ is the focal distance. These equations, upon introduction of the stream functionψ ,
and vorticityζ , take the following dimensionless form

coshξ sinη(sinh2 ξ + cos2 η)ζ + coshξ
∂

∂ξ

(
1

coshξ

∂ψ

∂ξ

)
+ sinη

∂

∂η

(
1

sinη

∂ψ

∂η

)
= 0, (2)
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∂
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= 2
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]
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. (3)

The stream function is related to the dimensionless velocity components(wξ ,wη) by

∂ψ

∂η
=
√

sinh2 ξ + cos2 η coshξ sinηwξ ,
∂ψ

∂ξ
= −

√
sinh2 ξ + cos2 η coshξ sinηwη, (4)

and the vorticity is defined in the usual way as the curl of the velocity vector.
In the above equations, the dimensionless variables are related to the dimensional ones

by: ψ = ψ ′/Uoc′2, ζ = (ζ ′c′/Uo),w = (w′/Uo), with Uo being the free-stream velocity
and primes denote dimensional quantities. The Reynolds number Re is defined as Re=
(ρUo(2c′)/µ), whereρ is the fluid density, andµ is the coefficient of viscosity.

The boundary conditions to be satisfied are the no-slip and impermeability conditions
on the surface of the spheroid and the free-stream conditions away from it. These can be
expressed as

ψ = ∂ψ

∂η
= ∂ψ

∂ξ
= 0 at ξ = ξo, (5)
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∂ψ

∂ξ
→ 1

2 sinh 2ξ sin2 η and
∂ψ

∂η
→ 1

2 cosh2 ξ sin 2η as ξ →∞. (6)

The parameterξo defines the surface of the spheroid and is related to the axis ratio(b/a) by:
ξo = tanh−1(b/a). A perfect sphere would be represented byξo →∞ whereas a flat circular
disk would be represented byξo = 0. The conditions in Equation (6) lead to,

ψ → 1
2 cosh2 ξ sin2 η as ξ →∞. (7)

The flow away from the oblate spheroid is irrotational leading to,

ζ → 0 as ξ →∞. (8)

3. The method of solution

Consider the following expansions forψ andζ

ψ =
∞∑
n=1

fn(ξ)

∫ 1

γ

Pn(τ)dτ, (9)

ζ =
∞∑
n=1

gn(ξ)P
1
n (γ ), (10)

wherePn(γ ) andP 1
n (γ ) are, respectively, the Legendre and first associated Legendre polyno-

mials of ordern with argumentγ = cosη. These functions form a complete orthogonal set in
the rangeγ = −1 to γ = 1, Alassar and Badr [4] and Dennis and Walker [5].

Substituting from Equations (9) and (10) in Equations (2) and (3) and multiplying by
P 1
m(γ ) and then integrating overγ from −1 to 1, we obtain the following expressions by

using the orthogonality properties of the Legendre functions,

d2fn

dξ2
− tanhξ

dfn
dξ
− n(n+ 1)fn = coshξn(n+ 1)

[
sinh2 ξ + 2n2+ 2n − 3

(2n− 1)(2n+ 3)

]
gn

+ coshξ
n(n+ 1)(n+ 2)(n+ 3)

(2n+ 3)(2n+ 5)
gn+2

+ coshξ
n(n− 1)(n− 2)(n+ 1)

(2n− 1)(2n− 3)
gn−2, (11)

d2gn

dξ2
+ tanhξ

dgn
dξ
+
[

1

cosh2 ξ
− n(n+ 1)

]
gn = Re

2
Sn, (12)

where,

Sn = 1

coshξ

 ∞∑
i=1

∞∑
j=1

αnij fi

(
dgj
dξ
− tanhξgj

)
+
∞∑
i=1

∞∑
j=1

βnij gj
dfi
dξ

 , (13)
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with the understanding thatg−1 = g0 = 0 and the coefficients appearing in the series in
Equation (13) are defined as:

αnij = −(2n+ 1)

√
j (j + 1)

n(n+ 1)

(
n i j

−1 0 1

) (
n i j

0 0 0

)
, (14)

βnij = (2n+ 1)

√
j (j2− 1)(j + 2)

n(n+ 1)i(i + 1)

(
n i j

−1 −1 2

) (
n i j

0 0 0

)
, (15)

where
(
j1
m1

j2
m2

j3
m3

)
are the 3-j symbols, which are defined in the Appendix.

The governing equations are now written in the form of a set of ordinary differential equa-
tions with the dependent variables being the coefficients(fn, gn) of the series. The resulting
Equations (11) and (12) represent two sets of ordinary differential equations, with every set
containing an infinite number of equations, as compared to the original two partial differential
equations. However, we will solve only few of these equations and yet obtain a highly accurate
solution. The boundary conditions associated with these equations are

fn(ξo) = dfn
dξ
(ξo) = 0, (16)

fn(ξ)→ cosh2 ξδn1,
dfn(ξ)

dξ
→ sinh 2ξδn1, gn(ξ)→ 0 as ξ →∞, (17)

whereδn1 is the Kronecker delta.

4. The numerical algorithm

The solutions of the functionsψ andζ are obtained by solution of the Equations (11) and
(12) for the functionsfn and gn and then substitution of the results in the series (9) and
(10). Equations (11) and (12) are first truncated aftern = N for someN which is to be
determined experimentally in order to achieve a highly accurate solution. In doing so, the
truncation automatically assigns zero values for all the functions with subscripts greater than
N . These functions with subscripts greater thanN appear on the right hand side of Equation
(11) when solving for thefn functions with subscriptsn = N − 1 and N. As a starting point,
all functions are assigned zero values. Equations (11) and (12) are then solved iteratively. The
numerical algorithm is as follows

1. Denoting the right-hand side of Equation (11) byrn(ξ), it can be rewritten as d2fn/dξ2−
tanhξ(dfn/dξ)− n(n+ 1)fn = rn(ξ). For each moden, central differences are used to
approximate the space derivatives and the resulting tridiagonal system of equations are
then solved for the functionfn. All the functionsfn are obtained sequentially fromn = 1
toN .

2. Similarly, Equations (12) are then solved for the functionsgn sequentially fromn = 1 to
N . It is important to observe that there are no boundary conditions for the functionsgn at
the surface of the spheroid. These values which are required to complete the integration
of Equations (12) are set to zero for the first iteration and then updated in subsequent
iterations as described in the next step.
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3. We obtain the boundary values of the functionsgn from Equations (11) by approximating
the space derivative d2fn/dξ2 by central differences. The following formula is obtained

coshξon(n+ 1)

[
sinh2 ξo + 2n2+ 2n− 3

(2n− 1)(2n + 3)

]
gn(ξo)

+ coshξo
n(n+ 1)(n+ 2)(n + 3)

(2n + 3)(2n+ 5)
gn+2(ξo)

+ coshξo
n(n− 1)(n− 2)(n + 1)

(2n − 1)(2n− 3)
gn−2(ξo) = 2fn(ξo + h)

h2
,

whereh = 1ξ . This approximation was successfully used for the elliptic cylinder case by
Patel [6] and for the sphere case by Drummond and Lyman [7]. This formula is solved for
the functionsgn on the surface of the spheroid (i.e. gn(ξo)) sequentially fromn = 1 toN .
It is important to understand that at any given instant we use the most recently available
information on the functionsgn andfn. For example, the values of the functionsgj+2(j

represents any mode from 1 toN) in the last formula which we need when solving for
gj (ξo), are taken from previous iterations, while those for the functiongj−2 are already
updated because they are solved for prior togj within the same iteration.

4. It was found that a relaxation factor was necessary to determine the functionsgmn (m
refers to the iteration number) according to

gmn (ξ) = κgmn (ξ)+ (1− κ)gm−1
n (ξ), (18)

wheregm−1
n (ξ) are the solutions obtained from the previous iteration, and 0< κ < 1.

5. Repeat all steps until convergence is reached. The condition set for convergence is
|gmn (ξ)− gm−1

n (ξ)| < 10−10.

The number of points used in theξ direction is 201 with a space step of 0·025. This
sets the outer boundary at a physical distance that ensures that the conditions at infinity are
appropriately incorporated in the numerical solution. We examined the effect of the step size
on the flow field near the spheroid by comparing the results when using different values. No
significant changes in the values of the drag or the surface vorticity were detected by reducing
the step size further than the given value. As there is no intrinsic way to determine it, the total
number of terms taken in the series was found by numerical experiments. The total number of
terms depends on Reynolds number andξo. For higher Reynolds numbers and lowerξo, more
terms are needed. One way to check the sufficiency of the number of terms taken in the series
is to observe the difference in the values of the drag. Figure 2 shows the surface vorticity for
the case Re= 0·1 andξo = 0·25 at different values ofN . In this case, the drag values for
the casesN = 6,8,10,12, and 16 are respectively, 5·14565,5·15525,5·15775,5·15845, and
5·15875 which differ at the maximum by 0·3%. The parameterκ, which is used in the aver-
aging process of the vorticity calculations, was determined through numerical experiments.
The parameter is higher for higher Reynolds numbers and is not sensitive to the parameterξo.
The number of iterations required for convergence at a tolerance of 10−10 ranges betwee 2,000
and 10,000. The higher number of iterations corresponds to the smaller axis ratio. The CPU
times depend on the number of terms taken in the series which, in turn, depends on Reynolds
number and the axis ratio. Typically 2 to 5 hours were needed for convergence on a 486-PC
with a 100-MHz processor.
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Figure 2.Surface vorticity distribution for the case
Re= 0·1, ξo = 0·25 at differentN values.

Figure 3. Surface pressure distribution for the
caseξo = 1·0, at different Reynolds numbers
(Curves from top to bottom are respectively Re=
0·1,0·2, 0·3, 0·4,0·5, 0·6, 0·7,0·8, 0·9, 1·0).

5. Results and discussion

In a typical problem of this nature, the quantities sought are the drag, surface vorticity, surface
pressure distribution, and the streamline and vorticity patterns. In what follows, we present
these for Reynolds numbers of 0·1,0·5, and 1·0 at values ofξo of 0·25,0·5,0·75,1·0,1·25,
and 1·5.

The drag exerted by the fluid on the spheroid, denoted byD is related to the dimensionless
coefficientCD by,

CD = Dc′

AµUo
, (19)

whereA(= πc′2 cosh2 ξ) is the spheroid projected area. The drag coefficient is composed of
two parts, one due to friction and the other due to pressure. We may then write,

CD = CDF + CDP . (20)

By integrating these forces over the surface of the spheroid, we get

CDF = −2 tanhξo

∫ π

o

ζ(ξo, η) sin2 η dη, (21)

CDP = − c′

µUo

∫ π

0
p′(ξo, η) sin 2ηdη, (22)

wherep′ is the dimensional pressure. By applying Navier-Stokes equations on the surface of
the spheroid, one can show that(

∂p

∂η

)
ξ=ξo
=
[
∂ζ

∂ξ
+ tanhξζ

]
ξ=ξo

, (23)
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wherep = p′c′/µUo. Using Equation (23) together with Equation (10), the drag components
can be expressed as

CDF = 8 tanhξo
3

g1(ξo, t), (24)

CDP = −4

3

[
tanhξog1(ξo, t)+ ∂g1

∂ξ
(ξo, t)

]
. (25)

As indicated by Equations (24) and (25), the drag depends on the first mode of the series in
Equation (10) which, in turn, depends on the other modes. The drag formula given by Payne
and Pell [2] takes the form

CD1 = 2B

3 coshξo
, (26)

and that modified by Breach [3] is

CD2 = 2B

3 coshξo

[
1+ BRe

48
+ B

2Re2

1440
log(Re/2)+O(Re2)

]
, (27)

where B = 12

coshξo[sinhξo + (1− sinh2 ξo)cot−1(sinhξo)]
. (28)

The dimensionless pressure distribution around the oblate spheroid can be obtained by integ-
rating Equation (23) which results in

p∗ = pη − pπ =
∫ η

π

(
∂ζ

∂ξ
+ tanhξζ

)
ξ=ξo

dη, (29)

and by using Equation (10), one can prove that

p∗(η, t) =
N∑
n=1

[Pn(cosη)− (−1)n]
[
∂gn

∂ξ
(ξo, t)+ tanhξogn(ξo, t)

]
. (30)

Figure 3 shows the surface pressure distributions for the caseξo = 1·0 when Re=
0·1,0·2,0·3,0·4,0·5,0·6,0·7,0·8,0·9, and 1·0. As Re increases, the difference in the pres-
sure between the front and the rear stagnation points increases. Figure 4 shows the variation
of the corresponding surface vorticity. The drag coefficients for the range of parameters con-
sidered in this study along with those from Equations (26) and (27) are listed in Table 1. As
Re increases, the computed drag coefficients increase with bothCD1 andCD2 underestimat-
ing the drag values.CD2 which modifies the Stokes drag presented byCD1 is closer to the
present numerical solution. It is useful to investigate the quantities(CD − CD1)/(CD)

∗100
and(CD − CD2)/(CD)

∗100 which measure the relative deviation of the drag formulae given
by Payne and Pell [2], and Breach [3] from the present study. At low Re, there is a good
agreement betweenCD1, CD2, andCD. As Re increases, the values depart from each other
with CD2 being closer toCD. If an error of 5% can be accepted, a range of validity forCD1,
andCD2 can be stated. The formula forCD1 is valid for Re6 0·3 while that ofCD2 is valid
for higher Reynolds numbers provided that a proper restriction onξo is imposed.
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Table 1. Comparison ofCD with Equations (26) and (27).

Re ξo CDF CDP CD CD1 CD2
CD−CD1
CD

∗
100 CD−CD2

CD

∗
100

Equation (26) Equation (27)

0·1 0·25 1·5054 3·6534 5·1588 5·042 5·117 2·26 0·81

0·1 0·50 2·2068 2·6866 4·8934 4·783 4·857 2·26 0·74

0·1 0·75 2·3853 2·0286 4·4139 4·307 4·376 2·42 0·86

0·1 1·00 2·2553 1·5551 3·8104 3·706 3·767 2·74 1·14

0·1 1·25 1·9804 1·2033 3·1837 3·082 3·133 3·19 1·59

0·1 1·50 1·6652 0·9369 2·6021 2·503 2·545 3·81 2·19

0·5 0·25 1·5770 3·8295 5·4065 5·042 5·378 6·74 0·53

0·5 0·50 2·3275 2·8363 5·1638 4·783 5·111 7·37 1·02

0·5 0·75 2·5390 2·1623 4·7013 4·307 4·610 8·39 1·94

0·5 1·00 2·4283 1·6778 4·1061 3·706 3·972 9·74 3·27

0·5 1·25 2·1618 1·3175 3·4793 3·082 3·306 11·42 4·98

0·5 1·50 1·8470 1·0440 2·8910 2·503 2·686 13·42 7·09

1·0 0·25 1·6605 4·0390 5·6995 5·042 5·714 11·54 −0·25

1·0 0·50 2·4625 3·0075 5·4700 4·783 5·439 12·56 0·57

1·0 0·75 2·7045 2·3110 5·0155 4·307 4·913 14·13 2·04

1·0 1·00 2·6125 1·8140 4·4265 3·706 4·238 16·28 4·26

1·0 1·25 2·3530 1·4440 3·7970 3·082 3·530 18·83 7·03

1·0 1·50 2·0385 1·1635 3·2020 2·503 2·869 21·83 10·40

Figure 4. Surface vorticity distribution for the
caseξo = 1·0, at different Reynolds numbers
(Curves from top to bottom are, respectively, Re=
0·1, 0·2,0·3, 0·4, 0·5,0·6, 0·7, 0·8,0·9,1·0).

Figure 5.Surface pressure distribution for the case
Re= 1·0 at differentξo values.

The effect ofξo on the pressure distribution and the surface vorticity can be seen in Figures
5 and 6. The Figures which show the results at Re= 1·0 whenξ0 = 0·25,0 ·5,0·75,1·0,1·25,
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and 1·5 indicate that whenξo decreases, the surface vorticity increases and a positive pressure
gradient may be expected.ξo = 0 corresponds to the circular disk case at which a singular
behavior of the pressure gradient is expected. Figure 7 shows the surface pressure distributions
for the case ofξo = 0·25. The corresponding analytical surface pressure distribution by Payne
and Pell [2] is also plotted on the same figure. An excellent agreement between the present
study and that of Payne and Pell can be observed at Re= 0·1.

Figure 6.Surface vorticity distribution for the case
Re= 1·0, at differentξo values.

Figure 7.Surface pressure distribution for the case
of ξo = 0·25, and comparisons with the analytical
solution by Payne and Pell.

Figure 8 shows the streamline and vorticity patterns for the cases Re= 0·1 and 1·0 when
ξo = 0·25 and 0·75. As expected, no separation occurs at these low Re values. The symmetry
of the equi-vorticity lines at Re= 1·0 is slightly distorted at Re= 1·0.

6. Conclusions

The series-truncation method by which the steam function and vorticity are expanded in terms
of Legendre functions has been used to investigate the flow past oblate spheroids at low
Reynolds numbers. The governing partial differential equations were transformed into two
sets of ordinary differential equations in the radial direction. A second-order accurate finite-
difference scheme was then used to solve these equations. The numerically computed drag
showed an excellent agreement with the analytical drag formulae given by Payne and Pell
[2] and Breach [3] at low Reynolds numbers. As Reynolds number increases, the calculated
solution departed from these analytical solutions. An estimate of the range of validity of the
analytical solutions has been made.
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Figure 8. Streamline (right) and vorticity (left) for the cases (a) Re= 0·1, ξo = 0·25, (b) Re= 1·0, ξo = 0·25,
(c) Re= 0·1, ξo = 0·75, (d) Re= 1·0, ξo = 0·75.

7. Appendix

The 3-j symbols
(
j1
m1

j2
m2

j3
m3

)
are transformation coefficients that appear in the problem of

adding angular momenta. They represent the probability amplitude that three angular mo-
mentaj1, j2, andj3 with projectionsm1,m2, andm3 are coupled to yield zero angular mo-
mentum. They are related to the famous Clebsch-Gordan coefficients(C). These symbols,
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however, possess simpler symmetry properties. The relation between 3-j symbols and the
Clebsch-Gordan coefficients is given by(

j1 j2 j3

m1 m2 m3

)
= (−1)j3+m3+2j1

1√
2j3 + 1

C
j3m3
j1−m1j2−m2

.

Many representations of the 3-j symbols are available. They may be represented by the square
3× 3 array of the ReggeR-symbol, by algebraic sums, or in terms of the generalized hyper-
geometric function of unit argument(3F2). The following formula should give a flavor of the
many representations available

C
cγ

aαbβ = δγ,α+β
1(abc)

(a + b − c)!(−b + c + α)!(−a + c − β)!

×
[
(a + α)!(b − β)!(c + γ )!(c− γ )!(2c + 1)!

(a − α)!(b + β)!
]1/2

×3F2

[ −a − b + c,−a + α,−b − β
−a + c − β + 1,−b + c + α + 1

∣∣∣∣∣1
]

where

1(abc) =
[
(a + b − c)!(a − b + c)!(−a + b + c)!

(a + b + c + 1)!
]1/2

For detailed discussion, representations, properties, and tabulated values, the reader is referred
to Varshalovichet al. [8, pp. 235–411].
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